Hadoop final year projects for CSE in Tirupur

What is Hadoop?

Hadoop is associate open supply distributed process framework that manages processing and storage for giant information applications running in clustered systems. it’s at the middle of a growing scheme of massive information technologies that square measure primarily wont to support advanced analytics initiatives, as well as prophetical analytics, data processing and machine learning applications. Hadoop will handle numerous types of structured and unstructured information, giving users additional flexibility for grouping, process and analyzing information than relative information bases and data warehouses gives.


Here, big data is used to better understand customers and their behaviors and preferences. Companies are keen to expand their traditional data sets with social media data, browser logs as well as text analytics and sensor data to get a more complete picture of their customers.

Why Glim Technologies, Best Hadoop final year project center in Tirupur?

Hadoop final year project center Tirupur offers IEEE Projects on Big Data for final year engineering Computer Science & Engineering students (CSE) and Final year engineering projects on Big Data for information science and engineering (ISE) students. Python based IEEE Projects on for M.Tech, CSE, CNE (Computer Network engineer) and BE CSE, B Tech IT students. Hadoop final year projects in Tirupur also offer online training for projects on Big Data for final year engineering Computer Science & Engineering(CSE) and Final year engineering projects on Big Data for information science and engineering students. Glim offers IEEE Projects training on software PYTHON at very cheap cost. See this section for list of Projects on Big Data or Contact us for details and projects on Big Data.

What we do at Glim Technologies, best Hadoop final year projects in Tirupur?

Hadoop final year project center offers Big data haddop based IEEE projects for M.tech and BE final year computer science branch students. Here at GLIM we use apache hadoop i.e., cloudera’s open source platform to work on. It is a Python based programming which runs on apache hadoop i.e, on cloudera framework. We have technical team who are skilled enough to provide solution on latest. IEEE related. Get analytics and hadoop based projects on big data for students using Python as core programming language.

Whom Final year Hadoop projects is suitable for?
Final year Hadoop Projects in Tiruppur  is suitable for BSC,BCA,B Tech,B.E,MCA and MTech Computer Science and Engineering(CSE) and Information Technology(I.T) students . This projects can be pursued by IT background Students. Hadoop project fee is very less at Glim Technologies and you will get complete knowledge of all Big Data concepts.

Best Hadoop final year projects in Tirupur Features
1)Guidance for IEEE Final year projects is provided by Real time employees
2)More than 10 years of Experience in Doing IEEE Final year Hadoop Projects
3)Project documentation help would be provided for students doing Hadoop Projects in Tirupur
4)Flexible timings can be chosen for doing IEEE final Hadoop Projects in Tirupur

Hadoop final year projects in Tirupur Syllabus

  1. PPHOPCM: Privacy-preserving High-order Possibilistic c-Means Algorithm for Big Data Clustering with Cloud Computing

As one vital technique of fuzzy agglomeration in data processing and pattern recognition, the possibilistic c-means rule (PCM) has been wide employed in image analysis and data discovery. However, it’s troublesome for PCM to supply a decent result for agglomeration massive information, particularly for heterogeneous information, since it’s at the start designed for less than tiny structured dataset. To tackle this drawback, the paper proposes a high-order PCM rule (HOPCM) for large information agglomeration by optimizing the target operates within the tensor area. Further, we have a tendency to style a distributed HOPCM technique supported Map-Reduce for terribly massive amounts of heterogeneous information. Finally, we have a tendency to devise a privacy-preserving HOPCM rule (PPHOPCM) to safeguard the personal information on cloud by applying the BGV encoding theme to HOPCM, In PPHOPCM, the functions for change the membership matrix and agglomeration centers are approximated as polynomial functions to support the secure computing of the BGV theme. Experimental results indicate that PPHOPCM will effectively cluster an outsized range of heterogeneous information victimization cloud computing while not revelation of personal data.

  1. Practical Privacy-Preserving Map-Reduce Based K-means Clustering over Large-scale Dataset

Clustering techniques are wide adopted in several world knowledge analysis applications, like client behavior analysis, targeted selling, digital forensics, etc. With the explosion of information in today’s huge data era, a significant trend to handle a agglomeration over large-scale datasets is out sourcing it to public cloud platforms. this can be as a result of cloud computing offers not solely reliable services with performance guarantees, however additionally savings on in-house IT infrastructures. However, as datasets used for agglomeration could contain sensitive info, e.g., patient health info, industrial knowledge, and behavioral knowledge, etc, directly outsourcing them to public cloud servers inevitably raise privacy considerations.

In this paper, we have a tendency to propose a sensible privacy-preserving K suggests that agglomeration theme which will be with efficiency outsourced to cloud servers. Our theme permits cloud servers to perform agglomeration directly over encrypted datasets, whereas achieving comparable machine complexness and accuracy compared with clustering’s over unencrypted ones. We have a tendency to additionally investigate secure integration of Map-Reduce into our theme that makes our theme extraordinarily appropriate for cloud computing surroundings. Thorough security analysis and numerical analysis do the performance of our theme in terms of security and potency. Experimental analysis over a five million objects dataset more validates the sensible performance of our theme.

  1. Public Interest Analysis Based on Implicit Feedback of IPTV Users

Modern data systems build it a lot of} simple to realize more insight into the general public interest, that is turning into additional and more vital in various public and company activities and processes. The disadvantage of existing analysis that focuses on mining the knowledge from social networks and on-line communities is that it doesn’t uniformly represent all population teams which the content will be subjected to self-censoring or creation. During this paper we have a tendency to propose and describe a framework and a way for estimating public interest from the implicit feedback collected from the IPTV audience. Our analysis focuses totally on the channel modification events and their match with the content data obtained from closed captions. The bestowed framework is predicated on construct modeling, viewership identification, associated combines the implicit viewer reactions (channel changes) into an interest score. The projected framework addresses each higher than mentioned disadvantages or issues. It’s ready to cowl a far broader population, and it will notice even minor variations in user behavior. We have a tendency to demonstrate our approach on an outsized pseudonymized real-world IPTV dataset provided by associate ISP, and show however the results correlate with completely different trending topics and with parallel classical long-run population surveys.

  1. Ring: Real-Time Emerging Anomaly Monitoring System over Text Streams

Micro web log platforms are extraordinarily standard within the massive data era thanks to its time period diffusion of data. It’s vital to understand what abnormal events are trending on the social network and be able to monitor their evolution and realize connected anomalies. During this paper we have a tendency to demonstrate RING, a time period rising anomaly observance system over small web log text streams. RING integrates our efforts on each rising anomaly observance analysis and system research. From the anomaly observance perspective, RING proposes a graph Associate in Nursingalytic approach such (1) RING is ready to observe rising anomalies at an earlier stage compared to the present ways, (2) RING is among the primary to get rising anomalies correlations in a very streaming fashion, (3) RING is ready to watch anomaly evolutions in time period at totally different time scales from minutes to months. From the system analysis perspective, RING (1) optimizes time-ranged keyword question performance of a full-text program to boost the potency of observance anomaly evolution, (2) improves the dynamic graph process performance of Spark and implements our graph stream model on that, As a result, RING is ready to method massive knowledge to the whole Weibo or Twitter text stream with linear horizontal measurability. The system clearly presents its blessings over existing systems and ways from each the event observance perspective and also the system perspective for the rising event monitoring task.

  1. Robust Big Data Analytics for Electricity Price Forecasting in the Smart Grid

Electricity value prognostication may be a important a part of good grid as a result of it makes smart grid price economical. Withal, existing strategies for value prognostication is also tough to handle with vast price information within the grid, since the redundancy from feature choice cannot be averted associated an integrated infrastructure is additionally lacked for coordinative the procedures in electricity value prognostication. To unravel such a drag, a unique electricity value prognostication model is developed. Specifically, 3 modules are integrated within the planned model. First, by merging of Random Forest (RF) and Relief-F rule, we tend to propose a hybrid feature selector supported gray Correlation Analysis (GCA) to eliminate the feature redundancy. Second, associate integration of Kernel perform and Principle part Analysis (KPCA) is employed in feature extraction method to appreciate the spatiality reduction. Finally, to forecast value classification, we tend to hints a differential evolution (DE) primarily based Support Vector Machine (SVM) classifier. Our planned electricity value prognostication model is complete via these 3 elements. Numerical results show that our proposal has superior performance than alternative strategies.

  1. Scalable Uncertainty-Aware Truth Discovery in Big Data Social Sensing Applications for Cyber-Physical Systems

Social sensing may be a new huge knowledge application paradigm for Cyber-Physical Systems (CPS), wherever a gaggle of people volunteer (or are recruited) to report measurements or observations concerning the physical world at scale. A elementary challenge in social sensing applications lies in discovering the correctness of according observations and responsibility of information sources while not previous knowledge on either of them. We have a tendency to check with this downside as truth discovery. Where as previous studies have created progress on addressing this challenge, 2 vital limitations exist: (i) current solutions failed to totally explore the uncertainty side of human according knowledge that results in sub-optimal truth discovery results; (ii) current truth discovery solutions are largely designed as sequent algorithms that don’t scale well to large-scale social sensing events. during this paper, we have a tendency to develop a climbable Uncertainty-Aware Truth Discovery (SUTD) theme to handle the higher than limitations. The SUTD theme solves a constraint estimation downside to collectively estimate the correctness of according data and therefore the responsibility of information sources whereas expressly considering the uncertainty on the reported data. to handle the quantifiability challenge, the SUTD is meant to run a Graphic process Unit (GPU) with thousands of cores, that is shown to run 2 to a few orders of magnitude quicker than the sequent truth discovery solutions. In analysis, we have a tendency to compare our SUTD theme to the progressive solutions victimization 3planet datasets collected from Twitter: Paris Attack, Oregon Shooting, and Baltimore Riots, beat 2015. The analysis results show that our new theme considerably out performs the baselines in terms of each truth discovery accuracy and execution time.


And More…

“Hi I done my Hadoop Final year projects Tirupur by the help of Glim technologies. They give us very clear explanations about the project module with real time examples”


“I am sherlin. Perfect time to deliver the project with full explanations. Thanks to Hadoop Final year projects Tirupur.”


“Hi, I am Sangeetha, I have done my Final Year Hadoop projects in Tirupur at Glim. Those people are well experienced to handle what ever projects it is. Good experience by done my projects there.”


“I’m glad to post review about Glim technologies on Hadoop Final year IEEE Projects in tirupur. This is really great experience by done a project with the help of real time employees. They are give an in and out loop hole and crystal clear explanation about the projects.”

“Thank you so much to Glim technologies for helping me to complete my IEEE Hadoop final year project in tirupur on deadline with the short time period. Its really helpful to us.”


Interested in training your team ? Get a custom quote.

+91 9962 734 734

+91 9940 355 138

Glim Technologies             5 out of 5 based on 1218 ratings.